The crossing number of the generalized Petersen graph $P[3k,k]$

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The crossing number of the generalized Petersen graph P(10, 3) is six

The crossing number of a graph is the least number of crossings of edges among all drawings of the graph in the plane. In this article, we prove that the crossing number of the generalized Petersen graph P (10, 3) is equal to 6.

متن کامل

The lower bound for the number of 1-factors in generalized Petersen graphs

‎In this paper‎, ‎we investigate the number of 1-factors of a‎ ‎generalized Petersen graph $P(N,k)$ and get a lower bound for the‎ ‎number of 1-factors of $P(N,k)$ as $k$ is odd‎, ‎which shows that the‎ ‎number of 1-factors of $P(N,k)$ is exponential in this case and‎ ‎confirms a conjecture due to Lovász and Plummer (Ann‎. ‎New York Acad‎. ‎Sci‎. ‎576(2006)‎, ‎no‎. ‎1‎, ‎389-398).

متن کامل

Graceful labelings of the generalized Petersen graphs

A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...

متن کامل

On the crossing numbers of certain generalized Petersen graphs

McQuillan, D. and R.B. Richter, On the crossing numbers of certain generalized Petersen graphs, Discrete Mathematics 104 (1992) 311-320. In his paper on the crossing numbers of generalized Petersen graphs, Fiorini proves that P(8, 3) has crossing number 4 and claims at the end that P(10, 3) also has crossing number 4. In this article, we give a short proof of the first claim and show that the s...

متن کامل

On the Independence Number of the Generalized Petersen Graph P(n,k)∗

Let G = (V (G),E(G)) be a simple finite undirected graph. A set S ⊆ V (G) is an independent set if no two vertices of S are adjacent. The independence number α(G) is the maximum cardinality of an independent set in G. In this paper, we investigate the independence number of generalized Petersen graph, and give the exact values of P(n,k) for k = 1,2,3,5.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematica Bohemica

سال: 2003

ISSN: 0862-7959,2464-7136

DOI: 10.21136/mb.2003.134001